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DIENOPHILIC AND DIPOLAR ADDITIONS TO BICYCLO[Z,?,OIPENT-2-ENE 
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SUMMARY: The dienophiles triazolinedione , singlet oxygen and in part tetracyanoethylene cyclo- 
add to bicyclo[Z.l.O]pent-2-ene (1) across the central d-bond to give bicyclo[2.2.1]heptene- 
type adducts, while the dipoles plienyl azide. benzonitrile oxide and diphenyldiazomethane cyclo- 
add at the n-bond with expected exo stereochemistry. - 

Bicyclo[2.l.O]pent-2-ene (1) represents an interesting substrate for cycloaddition in 

view of its various possible reaction modes. In principle, (2+2)-addition at the double bond 

could afford the exo-adduct g, at the strained d-bond would result in bicyclo[2.2.1]-adduct 2, 

homocycloaddition would give the bicyclo[3.2.0]-adduct 4, and cycloaddition with skeletal 

rearrangement would lead to adduct 5. In view of our interest in the latter cycloaddition mode, 

we examined the reaction of bicyclo[2.l.O]pent-2-ene (1) with triazolinediones.' Herein 

we report that the reaction of 4-phenyl-1,2,4-triazoline-3,5-dione (PTAD) with bicyclo- 

pentene Lina I:1 mixture of THF-CH2C12 at -78°C gave the urazole @ as sole product in 78% 

yield.'Similarly, with 4-methyl-1,2,4-triazoline-3,5-dione (MTAD) the urazole g$ was obtained 

in 82% yield. These adducts were not derived from adventitious cyclopentadiene because the 

freshly prepared bicyclopentene was treated with dimsyl anion prior to use to remove cyclo- 

pentadiene impurities.3 Low temperature 'H-NMR of the resulting solution of bicyclopentene 

showed not even traces of cyclopentadiene nor of its addition product with bicyclopentene. 
4 

Appropriate control experiments demonstrated that bicyclopentene did not isomerize to 

cyclopentadiene under the cycloaddition conditions of PTAD. Thus, while ethyl azodicarboxylate 
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did not react with bicyclopentene, it reacted efficiently with cyclopentadiene under the PTAD 

cycloaddition conditions. Even when using ethyl azodicarboxylate as solvent, bicyclopentene 

reacted with PTAD to give exclusively cycloadduct 5%. Not even traces of the expected product 

between cyclopentadiene and ethyl azodicarboxylate were observed. Had PTAD caused in situ "i?l,vvvl,~ 
isomerization of bicyclopentene into cyclopentadiene, its cycloadduct with ethyl azodicarboxy- 

late should have been formed in detectable amounts (at least O.l%), especially since the latter 

was used as solvent. 

Other reactive dienophiles were then tried out to assess the generality of this cyclo- 

additon mode. Thus, photo-sensitized oxygenation of bicyclopentene in CH2C12 at -78"C, using 

tetraphenylporphyrin as sensitizer, gave the epoxy-aldehyde { in 10% yield, a product known to 

be derived from rearrangement of the endoperoxide i.5 Presumably analogous to the TAD's, the 

singlet oxygen dienophile added across the strained a-bond of bicyclopentene. 

Reaction with tetracyanoethylene (TCNE) in THF at 0°C gave a mixture of the cycloadducts 

2 and 19 in 20% and 80% yields (by 'H-NMR), respectively. In contrast to previous claims*, 

the bicyclo[2.2.11-adduct 2 was not produced from cycloaddition of TCNE to adventitious cyclo- 

pentadiene derived from the bicyclopentene, as confirmed by control experiments analogous to 

those run for PTAD. Furthermore, the TCNE-adduct 19, possibly the product of homo-cycloaddition, 

did not isomerize into 2 under the reaction or isolation conditions. 

In contrast to these reactive dienophiles, 1,3-dipolar cycloaddition took place exclusively 

at the double bond. For example, phenyl azide in I:1 THF-CH2C12, benzonitrile oxide in I:1 

THF-C6H6, and diphenyldiazomethane in I:1 THF-CH2C12, all at ca. O"C, afforded the cycloadducts 

11 - 13, respectively.6 Decoupling experiments of the 400 MHz 'H-NMR spectra established that 

1,3-dipolar cycloaddition took place exo to the cyclopropane ring, as expected on the basis of - 

the concept of endo-bending of the olefinic hydrogens.7 

On the basis of the examples investigated here, an interesting dichotomy emerges concer- 

ning the cycloaddition behavior of bicyclopentene. As expected, 1,3-dipoles cycloadd at the 

R-bond, but surprisingly dienophiles appear to prefer the strained d-bond. Whether the dieno- 

phile reacted directly with the strained a-bond* or via electron transfer8 cannot be answered 

at this point. 
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6. Adduct L-2 was obtained in 40% yield, mp 83.5 - 84.5"C (plates from t-butyl methyl ether at 

-78'C).- 

IR (CC14): 3035, 2995, 2970, 1600, 1500, 1490, 1455, 1365, 1110, 1100, 1070, 1060, 1035, 

1025, 990, 970, 920, 900, 880, 685 cm-'.- 

UV (95% EtOH): Xmax (log E) = 350 (2.9), 274 (3.2), 242 (3.6), 223 sh (3.8) nm.- 

'H-NMR (CDCl 3, 400 MHz): 6 = 0.85 (pseudo td, IH, J = 7.3, 7.3, 5.5 Hz), 0.86 (pseudo dt, 

IH, J = 5.5, 2.0, 2.0 HZ), 2.08 (dddd, IH, J = 7.3, 5.5, 2.5, 2.0 Hz), 2.12 (pseudo ddt, IH, 

J = 7.3, 5.5, 2.0, 2.0 Hz), 3.98 (dd, IH, J = 5.4, 2.0 Hz), 4.80 (dd, IH, J = 5.4, 2.5 Hz), 

7.02 - 7.06 (m, IH), 7.25 - 7.28 (m, 2H), 7.33 - 7.38 (m, 2H).- 

13C-NMR (CDC13, 100.61 MHz): 6 = 10.75 (dd, J = 165 Hz), 19.30 (d, J = 187 Hz), 20.69 (d, 

J = 185 Hz), 56.60 (d, J = 157 Hz), 82.73 (d, J = 160 Hz), 114.08 (d, J = 165 Hz), 122.45 

(d, J = 160 Hz), 129.31 (d, J = 160 Hz), 140.05 (s).- 

MS (70 eV): m/e = 185 (0.8%, Mf), 157 (28%), 156 (loo%), 104 (20%), 77 (64%), 51 (38%), 

28 (45%).- 

Adduct 1; was obtained in 65% yield, mp 77 - 78°C (needles from t-butyl methyl ether at OX). 

IR (KBr): 3030, 3020, 2960, 2900, 1580, 1550, 1480, 1430, 1340, 1250, 1180, 1060, 1050, 

1030, 1020, 990, 920, 860, 850, 790, 750, 740, 680 cm-'.- 

UV (95% EtOH): Xmax (log E) = 265 (4.1), 212 nm (end absorption).- 

'H-NMR (CDC13), 400 MHz): s = 0.83 (pseudo dt, IH, J = 5.5, 1.3, 1.3 Hz), 0.84 (pseudo dt, 

IH, J = 6.0, 5.5, 5.5 Hz), 2.03 (dddd, IH, J = 6.0, 4.0, 1.5, 1.3 Hz), 2.11 (dddd, IH, 

J = 5.5, 4.0, 2.8, 1.3 Hz), 3.76 (dd, IH, J = 4.0, 1.5 Hz), 4.76 (dd, IH, J = 4.0, 2.8 Hz), 

7.30 - 7.46 (m, 3H), 7.62 - 7.80 (m, ZH).- 

13C-NMR (CDC13, 100.61 MHz): 6 = 13.40 (dd, J = 165, 158 Hz), 19.96 (d, J = 181 Hz), 27.12 

(d, J = 185 Hz), 24.60 (d, J = 147 Hz), 84.16 (d, J = 165 Hz), 125.96 (d, J = 158 Hz), 

127.68 (d, J = 159 Hz), 129.96 (d, J = 158 Hz), 138.00 (s), 157.80 (s).- 

MS (70 eV): m/e = 185 (59%, Mf), 156 (58%), 155 (43%), 129 (23%), 128 (23%), 82 (28%), 77 

(90%), 66 (lOO%), 53 (41%), 51 (55%).- 



Adduct 12 was obtained in 96% yield, mp 95 - 96°C (needles from t-butyl methyl ether at 

OY).- 

IR (KBr): 3280, 3240, 3000, 2960, 2940, 1580, 1560, 1490, 1450, 1300, 1250, 1220, 1210, 

1090, 1070, 1020, 980, 970, 910, 890, 830, 770, 760, 700, 690, 650, 630 cm-'.- 

UV (95% EtOH): Amax (log E) = 330 (2.5), 257 sh (4.1), 220 nm (end absorption). 

'H-NMR (CDCl3, 400 MHz): 6 = 0.89 (pseudo dt, IH, J = 6.5, 5.5, 5.5 Hz), 0.96 (pseudo dt, 

1.00 (dddd, lH, J = 6.5, 5.5, 3.0, 1.5 Hz), 1.99 (pseudo tt, IH, 

2.80 (dd, IH, J = 3.0, 1.5 Hz), 5.20 (pseudo t, IH, J = 3.0, 

H).- 

lH, 3 = 5.5,-l-5, 1.5 Hz), 

3 = 5.5, 5.5, 1.5, 1.5 Hz), 

3.0 Hz), 7.02 - 7.48 (in, 10 

13C-NMR (CDC13, 100.61 MHz) : 6 = 15.48 (t), 16.69 (d), 19.55 (d), 45.93 (d), 94.70 (d), 

28.25 (d), 128.47 (d), 128.57 (d), 141.85 

(31%), 217 (55%), 216 (37%), 215 (44%), 

83%), 189 (26%), 167 (73%), 165 (75%), 

59%), 128 (53%), 115 (39%), 101 (24%), 

100.37 (s), 127.21 (d), 127.66 (d), 127.98 (d), 

(s), 142.66 (s).- 

MS (70 eV): m/e = 260 (O.l%, M+), 232 (37%), 231 

205 (28%), 204 (36%), 203 (38X), 202 (45%), 191 

155 (43%), 154 (38%), 153 (44%), 152 (37%), 141 

91 (loo%), 77 (37%), 51 (27%), 28 (26%).- 
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